Foro de Tiempo.com

Foro general de Meteorología => Meteorología general => Mensaje iniciado por: _00_ en Martes 29 Abril 2008 23:36:42 pm

Título: Ionosfera (y electricidad atmosfética)
Publicado por: _00_ en Martes 29 Abril 2008 23:36:42 pm

Citar
Electricidad terrestre
Se conocen tres sistemas eléctricos generados por procesos naturales. Uno está en la atmósfera. otro está dentro de la Tierra, fluyendo paralelo a la superficie, y el tercero, que traslada carga eléctrica entre la atmósfera y la Tierra, fluye en vertical.

La electricidad atmosférica es el resultado de la ionización de la atmósfera por la radiación solar y a partir del movimiento de nubes de iones. Estas nubes son desplazadas por mareas atmosféricas, que se producen por la atracción del Sol y la Luna sobre la atmósfera. Suben y bajan a diario, como ocurre en el mar. La ionosfera constituye una capa esférica casi perfectamente conductora.

Las corrientes de la Tierra constituyen un sistema mundial de ocho circuitos cerrados de corriente eléctrica distribuidos de una forma bastante uniforme a ambos lados del ecuador, además de una serie de circuitos más pequeños cerca de los polos. La superficie de la Tierra tiene carga eléctrica negativa. La carga negativa se consumiría con rapidez si no se repusiera de alguna forma.

Se ha observado un flujo de electricidad positiva que se mueve hacia abajo desde la atmósfera hacia la Tierra. La causa es la carga negativa de la Tierra, que atrae iones positivos de la atmósfera. Al parecer, la carga negativa se traslada a la Tierra durante las tormentas y el flujo descendente de corriente positiva durante el buen tiempo se contrarresta con un flujo de regreso de la corriente positiva desde zonas de la Tierra con tormentas.
(http://www.astromia.com/tierraluna/magnetismo.htm (http://www.astromia.com/tierraluna/magnetismo.htm))

Teniendo en cuenta esta dinámica ¿podría ser factible la predicción de la intensidad eléctrica de una tormenta con un análisis de vientos en altura y las divergencias/convergencias?
Título: Re: Electricidad
Publicado por: Ribera-Met en Miércoles 30 Abril 2008 10:11:22 am
No, ya que solo tienes en cuenta las masas de aire, faltarían los procesos que hacen la localización de ionización extrema, frotamiento de hielo, inducciones... y que dan lugar un origen de corrientes..
Título: Re: Electricidad
Publicado por: _00_ en Miércoles 07 Mayo 2008 00:32:11 am
Artículo de la nasa sobre los fundamentos que usan para la predicción de rayos en los sistemas espaciales:
http://www.aero.org/publications/crosslink/summer2001/05.html (http://www.aero.org/publications/crosslink/summer2001/05.html)

Sobre la electricidad en las tormentas:
http://ciencia.nasa.gov/headlines/y2003/30oct_lightning.htm (http://ciencia.nasa.gov/headlines/y2003/30oct_lightning.htm)
http://www.sapoi-sa.com/teoriae.htm (http://www.sapoi-sa.com/teoriae.htm)

Comentarios sobre Sistema de captura ionosférica:
http://espanol.geocities.com/energratis/elf/vlf.htm (http://espanol.geocities.com/energratis/elf/vlf.htm)

Comportamiento de la capa F2  de la ionosfera como resultado de las interacciones del sistema dinAmico viento solar-magnetosfera-ionosfera
http://www.dict.uh.cu/Revistas/F%EDs2003/FIS%2020103-2.doc (http://www.dict.uh.cu/Revistas/F%EDs2003/FIS%2020103-2.doc)



Añado alguna página relacionada:
http://www.stormwise.com/striking.htm (http://www.stormwise.com/striking.htm)
http://www.crystalinks.com/lightning.html (http://www.crystalinks.com/lightning.html)
http://www.pnas.org/content/94/20/10512.full.pdf (http://www.pnas.org/content/94/20/10512.full.pdf)
http://www.sciencebits.com/LightningWithoutStorm (http://www.sciencebits.com/LightningWithoutStorm)
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=23391 (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=23391)
http://www.vlf.it/thierry/waveguide_propagation.html (http://www.vlf.it/thierry/waveguide_propagation.html)(este es sobre propagación de ondas, pero es interesante)
http://thunder.nsstc.nasa.gov/ (http://thunder.nsstc.nasa.gov/)
http://www.nature.com/nature/journal/v435/n7043/full/nature03638.html (http://www.nature.com/nature/journal/v435/n7043/full/nature03638.html)
http://www.altair.org/atmoelec.html (http://www.altair.org/atmoelec.html)
Título: Re: Electricidad
Publicado por: _00_ en Lunes 04 Agosto 2008 01:01:11 am
Mapas mundiales diarios de rayos (con herramienta de zoom):
http://thunder.nsstc.nasa.gov/data/lisbrowsenqc.html (http://thunder.nsstc.nasa.gov/data/lisbrowsenqc.html)
Título: Re: Electricidad
Publicado por: _00_ en Martes 05 Agosto 2008 02:08:01 am
Ficheros de la ionosfera para google earth :

http://terra1.spacenvironment.net/%7Eionops/ES4Dintro.html (http://terra1.spacenvironment.net/%7Eionops/ES4Dintro.html)

Fichero de rayos (y otros) para google earth:
http://www.guiweather.com/kml.html (http://www.guiweather.com/kml.html)

Título: Re: Electricidad
Publicado por: The MeTTeacher en Martes 05 Agosto 2008 02:21:55 am
Recientemente vi en televisión que hablaban de algún tipo de relación entre terremotos y destellos luminosos en la atmósfera, al pasar la energía de los primeros al aire... algo así, pero no lo recuerdo bien.
Título: Re: Electricidad
Publicado por: _00_ en Martes 05 Agosto 2008 02:34:55 am
Recientemente vi en televisión que hablaban de algún tipo de relación entre terremotos y destellos luminosos en la atmósfera, al pasar la energía de los primeros al aire... algo así, pero no lo recuerdo bien.

Interesante,
pongo algún enlace que he encontrado, (al fenómeno también le llaman "earthlights")

http://www.nature.com/nature/journal/v228/n5273/abs/228759a0.html (http://www.nature.com/nature/journal/v228/n5273/abs/228759a0.html)
Citar
IN some parts of the world, earthquakes are often accompanied by ball lightning, stroke lightning and sheet lightning1. The only causal connexion that seems possible is that the seismic strains of the earthquake somehow cause an electric field in the air, which in turn produces ball lightning2 and stroke and sheet lightning. What is the mechanism of this "seismoelectric effect" ?

http://www.newton.dep.anl.gov/askasci/env99/env99354.htm (http://www.newton.dep.anl.gov/askasci/env99/env99354.htm)
Citar
Lightning discharges are known to accompany both earthquakes and
volcanoes. The exact mechanism is not well understood. According to
one source: "Transients luminous phenomena that may be due to
electrical discharges have long been observed during earthquakes and
speculatively attributed to the electric field generated by seismic
strain." But that does not really tell us anything, does it?

http://www.siu.edu/~perspect/05_fall/earthquakes.html (http://www.siu.edu/~perspect/05_fall/earthquakes.html)
Citar
Scientists in the United States, Europe, and Japan have scrutinized electrical data after the fact and have detected minute increases in electrical activity just before or during big quakes. They've suggested various alternative explanations for these findings, such as earthquake-triggered shifts in the water table or failure of power grids.

http://en.wikipedia.org/wiki/Earthquake_light (http://en.wikipedia.org/wiki/Earthquake_light)
Citar
The precise mechanism, if such a phenomenon exists—as opposed to being coincidence with aurora or mistaken recall after a traumatic event such as an earthquake—is unknown. One theory suggests that earthquake lights are a form of plasma discharge caused by the release of gases from within the Earth and are electrically charged in the air, which might be confirmed by or simply related to the reports of steam venting out of the earth in recent Peruvian earthquakes.

Another possible explanation is local disruption of the Earth's magnetic field and/or ionosphere in the region of tectonic stress, resulting in the observed glow effects either from ionospheric radiative recombination at lower altitudes and greater atmospheric pressure or as aurora. However, the effect is clearly not pronounced or notably observed at all earthquake events and is yet to be directly experimentally verified.[citation needed]

Another explanation involves intense electric fields created piezoelectrically by tectonic movements of rocks containing quartz[9].

Some similar clouds have been reported during nuclear tests [10] and radon is likely to be an earthquake precursor[11], so another theory is that glowing clouds might be light emission produced by ionization or plasma-chemical reactions[12]
Título: Re: Electricidad
Publicado por: _00_ en Martes 12 Agosto 2008 05:51:32 am
Física electromagnética de la dinámica eléctrica atmosférica:
http://www.sleepingearthed.com/WorldScientistsontheGlobalElectricalCircuit.pdf (http://www.sleepingearthed.com/WorldScientistsontheGlobalElectricalCircuit.pdf)

Influencia solar en el circuito eléctrico (y otros efectos)
http://www.utdallas.edu/physics/pdf/Tin_rev.pdf (http://www.utdallas.edu/physics/pdf/Tin_rev.pdf)
Título: Re: Electricidad
Publicado por: _00_ en Domingo 09 Noviembre 2008 21:38:31 pm
Información muy completa sobre la dinámica ionosférica (inglés)
Ionosphere (Earth's) (http://www.oulu.fi/~spaceweb/textbook/ionosphere.html)
Título: Re: Electricidad
Publicado por: Federico en Lunes 10 Noviembre 2008 13:32:41 pm
Dios mio, cuantos links, parecen buenos, especialmente los primeros relacionados a tormentas electricas.

Gracias.
Título: Re: Ionosfera (y electricidad atmosfética)
Publicado por: _00_ en Domingo 22 Febrero 2009 22:52:13 pm
The Ionosphere and Upper Atmospheric Electrodynamics

Citar
...
Observations of ionospheric electric fields and of the magnetic perturbations produced by ionospheric currents give us important information about thermospheric winds and about the interaction of the solar wind with the magnetosphere. Direct observations of thermospheric winds are relatively limited, but observations of magnetic perturbations exist for long periods of time at many locations around the Earth. When interpreted with the aid of simulation models of the ionospheric wind dynamo, magnetic data from sites at middle and low latitudes can provide a wealth of information about the distribution and variability of thermospheric winds on the sunlit side of the Earth. At high magnetic latitudes, observations of ionospheric electric fields and of magnetic perturbations on the ground and on satellites reveal characteristics of solar-wind/magnetospheric dynamo processes.

At middle and low latitudes, winds in the ionospheric dynamo region tend to be dominated by global oscillations. Above 140 km, daily wind oscillations with magnitudes over 100 m/s are driven primarily by the absorption of far-ultraviolet solar radiation. Between 90 km and 140 km the oscillations are strongly influenced by upward propagating global waves, called atmospheric tides, that are generated by solar heating at lower altitudes: in the upper ozone layer (30-60 km) and in the troposphere (below 10 km). Gravitational tidal forcing by the Moon and Sun also contribute, but only in a minor way. As the tides propagate into regions of exponentially decreasing air density, their amplitudes can grow, reaching values of 100 m/s or so in the lower thermosphere before the waves are eventually dissipated. The generation and propagation conditions for these waves tends to favor the arrival of semidiurnal (12-hour) tides over diurnal (24-hour) tides in the dynamo region. Upward-propagating planetary waves with periods of 2-20 days are also believed to influence winds in the lower thermosphere, but their relative importance there has not yet been established. At high latitudes, electric currents drive thermospheric winds that at times can reach 1000 m/s or more in the upper thermosphere, both by the motor effect mentioned earlier, and by resistive heating of the gas that affects the pressure-gradient forces on the air. Variations in the sources of the winds, as well as variations in the propagation conditions of tides and planetary waves through the middle atmosphere (10-100 km), are responsible for variability of the thermospheric winds on a day-to-day, seasonal, and solar-cycle basis. Analyses of geomagnetic variations have revealed many properties of the winds and their variations. Since many of the geomagnetic measurements extend back in time for many decades, studies related to possible long-term global atmospheric change are feasible.
...
http://web.hao.ucar.edu/public/education/stp/EOS/EOS.html

y uno que no se donde poner,
es sobre la influencia del sol y la formación de ondas de infrasonido  que modulan el campo geomagnético terrestre (debería ir a magnetismo)
http://www.isr.lviv.ua/Infrasoundengl.htm (http://www.isr.lviv.ua/Infrasoundengl.htm)
Título: Re: Ionosfera (y electricidad atmosfética)
Publicado por: Ribera-Met en Sábado 28 Febrero 2009 22:28:48 pm
Gracias por la info ;)
Título: Re: Ionosfera (y electricidad atmosfética)
Publicado por: _00_ en Jueves 19 Marzo 2009 21:04:55 pm
evolución de la tormenta geomagnética del 20-21 de marzo de 1990 en el hemisferio norte,

http://www.hao.ucar.edu/modeling/amie/Mar_90.php#HEADODOC (http://www.hao.ucar.edu/modeling/amie/Mar_90.php#HEADODOC)

algún dato medido en regiones polares sobre precipitación electrónica,
http://earthweb.ess.washington.edu/~mkoko/research.html (http://earthweb.ess.washington.edu/~mkoko/research.html),
Citar
The vertical field vanishing is consistent with previous observations.  Assuming a slowly varying current density through SEP onset, an enhanced conductivity will require a lower electric field to move charge through the fair-weather region of the global electric circuit.  Horizontal electric fields observed by balloon instrumentation in the polar stratosphere are not associated with the global circuit and therefore represent entirely different physical system affected by the SEP event.  The full explanation of the horizontal electric field disappearance is the focus of continuing work and will b the subject of a forthcoming paper by Kokorowski et al.  Initial results from the MINIS-observed SEP event can be found in Kokorowski et al., 2006.
Título: Re: Ionosfera (y electricidad atmosfética)
Publicado por: _00_ en Lunes 04 Mayo 2009 01:15:22 am
un artículo "light" que más que ionosfera es de la magnetosfera,
(compresión de la magnetosfera con las explosiones solares)

(http://www.esa.int/images/ClusterReconnection_L.gif)
Watching solar activity muddle Earth's magnetic field (http://www.scientificamerican.com/article.cfm?id=watching-solar-activity-muddle-eart)
Título: Re: Ionosfera (y electricidad atmosfética)
Publicado por: _00_ en Sábado 12 Diciembre 2009 00:25:21 am
Un artículo sobre electricidad en tormentas de polvo:

The electrification of dust-lofting gust fronts (‘haboobs’) in the Sahel  (http://www.ecd.bnl.gov/pubs/BNL-82263-2009-JA.pdf)
Título: Re: Ionosfera (y electricidad atmosfética)
Publicado por: _00_ en Viernes 01 Enero 2010 20:39:04 pm
unos artiículos relacionados con el estudio del circuito eléctrico,

parece ya claro que la electricidad de las tormentas tienen como factores implicados a la ionosfera y el sol como modulador  ;)

Citar
...Thunderstorms and electrified clouds are the 'batteries' of the atmospheric electric circuit, which drive the current from the ground to the ionosphere, while lightning is a visual representation of the current. The flow of current around the world is modulated by cosmic rays, which control atmospheric conductivity. (Cosmic rays are in turn modulated by the solar wind). The circuit is completed when the current trickles back to Earth, in regions remote from thunderstorm activity, such as Antarctica.
International Polar Day - Above the Polar Regions (http://www.aad.gov.au/default.asp?casid=35550)

Citar
Global thunderstorms maintain the lowest reaches of the ionosphere at a potential of ~250 kV with respect to the ground. This results in a very weak atmospheric current (3 pico-amps per metre squared) toward the Earth in the fair-weather regions of the globe, and near the ground maintains a substantive vertical electric field of some 100 volts per meter. Cosmic ray ionisation, the magnitude of which can be controlled by solar activity via the solar wind, modulates the resistance of this global electric circuit in which thunderstorms are the generators. By controlling the ease with thunderstorms can dissipate current it is feasible that solar activity may modulate the intensity of thunderstorm development, thus modulating the distribution of energy within the meteorological system.

High, dry regions with no thunderstorms, such as the Antarctic plateau, are ideal for monitoring the global geoelectric circuit. Additional solar influences on the geoelectric field occur at high latitudes, via the same processes that generate the aurora. In conjunction with Russian and American colleagues, we presently measure the geoelectric field at the Russian station, Vostok, on the Antarctic plateau. We have shown that solar variability can influence the geoelectric field measured at ground level in polar regions, and are continuing to develop research instrumentation and methods of testing the viability of a solar variability influence on weather and climate through modulation of the geoelectric circuit.
Can solar variability influence climate? (http://www.aad.gov.au/default.asp?casid=2136)

Citar
Thunderstorms and strongly electrified clouds are batteries contributing a globally uniform, time-varying electric potential of ~240 kV, directed downward, between the ionosphere and the ground. In fair-weather regions this potential drives an air-Earth current of ~3 pA m-2 (approximately 3 millionths on a millionth of an ampere flows through each square meter of the atmosphere from the ionosphere to the Earth, away from regions of meteorologically induced electrical activity). Near ground-level, a vertical electric field of ~100 V m-1 can be measured. The time-constant of this global atmospheric circuit is ~20 min. [References:  Bering et al., 1998; Rycroft et al., 2000; Markson, 2007]

Measurements of the global atmospheric circuit are generally made away from the regions of significant local convective activity and where the seasonal-diurnal variations in atmospheric conductivity are minimised. Above the oceans, some mountain tops and ice-caps are preferred sites. Times when local meteorological electrical activity is negligible, known as 'fair weather', may still be limited. For example, fair weather conditions occur for ~10% of time at the Antarctic Coastal station of Davis [Burns et al., 1995] and ~55% of time at the Antarctic Plateau station of Vostok [Burns et al., 2006].

Atmospheric convective processes which generate thunderstorm activity occur principally over warmed land (see the annual summaries at http://thunder.msfc.nasa.gov/data/OTDsummaries) and maximise in the local afternoon hours. Combined with the global distribution of landmasses, this is believed to be the reason the average, fair-weather diurnal variation in the ground-level, vertical electric field at suitable sites has a diurnal maximum at ~20 UT a diurnal minimum at ~04 UT, and a diurnal range ~37% of the mean. The reference standard for the diurnal variation in the fair-weather field remains the average determined from the cruises of the Carnegie in the first half of the twentieth century [see Reiter, 1992]
Solar Linkages to Atmospheric Processes   (http://globalcircuit.phys.uh.edu/SLAP/index.htm)
Título: Re: Ionosfera (y electricidad atmosfética)
Publicado por: El buho en Jueves 29 Julio 2010 00:09:05 am
Sobre reconexiones magnéticas y un nuevo concepto, los espaciomotos  :-\ mejor en inglés, los spacequakes:

http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=44362

http://www.esa.int/esaSC/SEMHR50PFBG_index_0.html

http://science.nasa.gov/science-news/science-at-nasa/2010/27jul_spacequakes/

http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=46333